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We analyze the scaling behavior of the two smallest Lyapunov exponents for electrons propagating on
two-dimensional lattices with energies within a very narrow interval around the chiral critical point at E=0 in
the presence of a perpendicular random magnetic flux. By a numerical analysis of the energy and size depen-
dence we confirm that the two smallest Lyapunov exponents are functions of a single parameter. The latter is
given by ln L / ln ��E�, which is the ratio of the logarithm of the system width L to the logarithm of the
correlation length ��E�. Close to the chiral critical point and energy �E��E0, we find a logarithmically diver-
gent energy dependence ln ��E�� �ln�E0 / �E���1/2, where E0 is a characteristic energy scale. Our data are in
agreement with the theoretical prediction of Fabrizio and Castelliani �Nucl. Phys. B 583, 542 �2000�� and
resolve an inconsistency of previous numerical work.
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I. INTRODUCTION

The numerical determination of transport parameters for
electrons propagating in disordered two-dimensional �2D�
systems with chiral symmetry still remains an important un-
solved problem. The situation can be represented by a single-
band tight-binding model defined on bipartite lattices sub-
jected to purely off-diagonal disorder like a random magnetic
flux with zero mean or real random hopping terms. The latter
belongs to the chiral orthogonal universality class while the
former is chiral unitary. Due to the chiral symmetry, the
model exhibits metallic behavior only at energy E=0.1 It is
therefore of considerable interest to study the critical prop-
erties of the model in the vicinity of the critical point and to
investigate its universality.

The traditional finite-size-scaling analysis of disorder
driven metal-insulator transitions, i.e., continuous quantum
phase transitions at zero temperature, is based on two
assumptions.2–5 �i� In the vicinity of the critical point all
variables of interest are a function of only one parameter,

v�E,L� = F�L/��E�� , �1�

where ��E� is the energy-dependent correlation length. Here,
vicinity means that both the system size L and ��E� are al-
ready larger than any other typical length of the model and
��L. �ii� At the critical energy Ec, the correlation length
��E� diverges as

��E� � �E − Ec�−� �2�

with a universal critical exponent �. Relation �2� was con-
firmed in a multitude of numerical work on disordered sys-
tems in spatial dimension 2�d�5 and various physical
symmetries.6 As scaling variables, for example, the localiza-
tion length,7 the smallest Lyapunov exponent,8 the two-
terminal conductance,9,10 the energy-level spacings,11–13 and
the inverse participation ratio14 were successfully used.

Recently, the analysis of numerical data obtained for the
energy dependence of the two-terminal conductance g on a
bricklayer lattice,15 which represents a generic lattice model
for graphene, has led to a power-law energy dependence of

the correlation length ��E�� �E�−�, where the critical expo-
nent � is close to 1/3. Although this outcome is in agreement
with previous numerical results16–20 for square and hexago-
nal lattices, it is at variance with the Harris criterion21 which
states that ��1 /d, where d=2 is the Euclidian dimension of
the system. More importantly, all numerical data obtained to
the present date do not agree with theoretical predictions,1,22

according to which the correlation length depends logarith-
mically on the energy,

��E� = �0 exp�A�ln�E0/�E���, �E� � E0, �3�

where A is related to the longitudinal conductivity and E0 is
assumed to be of the order of the energy bandwidth.1 A pos-
sible explanation of this disagreement between theory and
numerical experiments may be that the energies investigated
in the numerical studies, down to 10−10 so far20 �in units of
the hopping energy�, are not sufficiently small in comparison
to the unspecified parameter E0 introduced in the theory.
Thus, it could be that the energy interval �E��E0, where the
scaling holds, was not reached in previous numerical studies.
A second obstacle is the vanishing of the density of states
��E� which occurs at E=0 for hexagonal and bricklayer lat-
tices in the presence of random-magnetic-flux disorder.23

This behavior persists even in strongly disordered chiral sys-
tems so that the two-terminal conductance, which neverthe-
less turns out to be finite �e2 /h at the Dirac point in
graphene,15,24–26 is not a suitable scaling variable for numeri-
cal studies. Therefore, it is expedient to investigate instead
the smallest Lyapunov exponents, which are associated with
the localization length and are not directly affected by the
vanishing density of states.

In this paper, we analyze the scaling behavior of both the
two-dimensional bricklayer and square-lattice model with
random-magnetic-flux disorder. Using the transfer-matrix
method for quasi-one-dimensional �1D� systems,3–5,8 we cal-
culate the two smallest Lyapunov exponents z1 and z2 for
energies very close to E=0, not achieved in previous work.
Lyapunov exponents are more suitable than the conductance
since they are less sensitive to the energy dependence of the
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density of states. Another reason for using Lyapunov expo-
nents is that the analysis of the conductance is far more time
consuming, which is crucial since quadruple precision is nec-
essary in our case when energies smaller than 10−16 are con-
sidered. We show that in the vicinity of the critical point our
numerical data for the Lyapunov exponents lead to the rela-
tion

z1,2�E,L� = F1,2� ln L

ln ��E�	 , �4�

where L is the width of the system. We prove that the corre-
lation length ��E� depends logarithmically on the energy �see
Eq. �3�� in agreement with the predictions by Fabrizio and
Castelliani.22 Thus, our results resolve the previous discrep-
ancy between analytical theory and numerical calculations.

II. MODEL AND METHOD

We study a single-band tight-binding Hamiltonian defined
on a two-dimensional square lattice with nearest-neighbor
hopping and random-flux disorder, which is introduced by
complex phase factors in the transfer terms,

H/V = 

x,y

��ei�x,y+a;x,ycx,y
† cx,y+a + e−i�x,y−a;x,ycx,y

† cx,y−a�

+ 

x,y

�cx,y
† cx+a,y + cx,y

† cx−a,y� , �5�

where cx,y
† and cx,y denote creation and annihilation operators

of a fermionic particle at site �x ,y�, respectively. For brick-
layer lattices, the prime at the first sum in Eq. �5� indicates
that only the transfers along every other vertical bond are
included. In this way, the square lattice is transformed into a
bricklayer where the coordination number is reduced to three
nearest-neighbor sites. The bricklayer lattice has the same
topology as the honeycomb lattice of graphene and Hamil-
tonian �5� possesses the same eigenvalues 	
i. The phases,
which are chosen to be associated only with the vertical
bonds in the y direction, �x,y;x,y+a=�x+2a,y;x+2a,y+a− 2�e

h �x,y,
are defined by the random magnetic flux �x,y, which is uni-
formly distributed −f /2��x,y � f /2 with zero mean and dis-
order strength 0� f / �h /e��1. The random magnetic flux is
pointing perpendicular to the 2D lattice and periodic bound-
ary conditions are applied in the y direction. In contrast to
diagonal disorder, this random flux preserves the chiral sym-
metry for both the square and bricklayer lattices. We fix the
units of energy and length scales by the nearest-neighbor
hopping energy V=1 and the lattice constant a=1, respec-
tively. The disorder strength is taken to be f =0.5h /e for the
bricklayer and f =1.0h /e for the square lattice.

We use the transfer-matrix method6 and collect numerical
data for the two smallest Lyapunov exponents z1�E ,L� and
z2�E ,L�. For the system width L and length LxL, we cal-
culate the transfer matrix M=�i

LxMi and extract the two
smallest Lyapunov exponents. The relative uncertainty
��E ,L� of our data is 2�10−3 for larger widths L=192 and
L=160, and decreases down to 10−4 for the smallest L=8.
This requires the length of the quasi-1D systems Lx to be in
the range �108–109. Since we expect that scaling occurs

only in the vicinity of the E=0 critical point, we consider
energies as small as possible, down to the point of �E�
=10−34, at least for L�64. This requires to perform the cal-
culations with quadruple numerical precision.

The specific symmetry of the model provides us with an
independent test of the accuracy of our data. Due to the
chiral symmetry, the spectrum of Lyapunov exponents must
be degenerate at the band center for all L,

z1�E = 0,L� = z2�E = 0,L� . �6�

Deviations from E=0 remove this degeneracy but the aver-
age value, �z1�E�+z2�E�� /2, equals to z1�E=0� for small val-
ues of E.

III. BRICKLAYER LATTICE

The energy dependence of the two Lyapunov exponents is
plotted in Fig. 1 for various system widths L of the brick-
layer. Our data confirm that z1 and z2 are analytical functions
of the variable 1 / �ln�E��. Therefore, we approximate their en-
ergy dependence by the Taylor expansion

z1��,L� − z1�0,L� = c0�L� + c1�L�� + c2�L��2, �7�

where

� =
1

�ln�E0/�E���
�8�

and by a similar expansion z2�� ,L�−z2�0,L�=d2�0,L�
+d1�L��+d2�L��2, for the second Lyapunov exponent.
Comparing with Eq. �2�, we conclude that ln��0 /a�
�A�ln�E0 / �E���1/2 so that in what follows we consider �0
�a. The expansion coefficients ci and di are determined nu-
merically. The L dependence of the coefficient c0 and d0
shows finite-size corrections. For the bricklayer, we found
that c0 and d0 depend only weakly on L provided that L
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FIG. 1. �Color online� The smallest Lyapunov exponents
z1�E ,L�−z1�E=0,L� �lower branches� and z2�E ,L�−z2�E=0,L�
�upper branches� as a function of 1 / �ln�E�� for energies �E��3
�10−10. The applied random-flux strength is f =0.5h /e and the
width of the quasi-1D systems is in the range 8�L�64. Solid lines
are quadratic fits. The inset shows the size dependence of z10

=z1�E=0,L� for 8�L�192.

P. MARKOŠ AND L. SCHWEITZER PHYSICAL REVIEW B 81, 205432 �2010�

205432-2



�16 �data are shown in the inset of Fig. 1�. For instance, we
obtain that z1�E=0,L=16�=1.5498	0.0003 and z1�E=0,L
=192�=1.557	0.002.

To estimate the energy E0, we first minimize the expres-
sion

X = 

E,L

�z�E,L� − F�E,L��2

�z�E,L���E,L��2 , �9�

where

F�E,L� = �0 + �1�ln L��1� + �2�ln L��2�2 �10�

with respect to parameters �, �, and E0. We found that X
possesses a minimum when 2.2��1�2.5, 3.8��2�4.1,
and 0.1�E0. It was not possible to obtain a better estimation
of the critical parameters from this procedure since small
variation in E0 can be compensated by small change in �2
and �2. Instead, in a more accurate analysis, we fit our nu-
merical data for z1 and z2 to the quadratic expansion �Eq.
�7��. Figure 2 shows the L dependence of the coefficients c1,2
and d1,2. Our data confirm the assumed logarithmic behavior
of all coefficients occurring in the expansion

c1�L�, d1�L� � �ln�L���1 �11�

and

c2�L�, d2�L� � �ln�L���2, �12�

where �1 and �2 are close to the anticipated values 2 and 4,
respectively.

Figure 3 shows another test of the scaling of the
Lyapunov exponents. Following the conventional scaling
method,5 we rescaled the horizontal axis for the data shown
in Fig. 1 by the parameter C�L�: �→�C�L�. The such ob-
tained C�L� gives us directly the required scaling behavior as
shown in the Fig. 3. The data for both z1 and z2 scale to one
universal curve. The inset to Fig. 3 confirms the expected
power-law relation C�L�� �ln L�2.

To obtain a quantitative estimation of the energy E0, we
repeated the scaling analysis shown in Fig. 3 for various E0.
Although we recovered the scaling behavior similar to that
shown in Fig. 1 �data not shown�, the L dependence of the
parameter C�L� depends on the choice of E0. As shown in
Fig. 4, C�L�� �ln L�� with the exponent � decreasing when
E0 increases, converging to ��2 for E0�1. We conclude
that the energy E0 is on the order of unity in our bricklayer
model.

Finally, we plot the two smallest Lyapunov exponents as a
function of a single parameter �ln L�2 / ln�E0 / �E�� with E0
=0.8 in Fig. 5. To reduce the finite-size corrections, we sub-
tract from the data the values z1�E=0.L� and z2�E=0,L�,
respectively. All data collapse onto a single curve.

IV. SQUARE LATTICE

Another possibility to check for logarithmic scaling at
chiral quantum critical points is the numerical analysis of a
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simple square lattice.16–20 We calculated z1�E ,L� and z2�E ,L�
for L even and Dirichlet boundary conditions in the trans-
verse direction. We found that the scaling analysis is more
difficult than for the bricklayer. First, the finite-size effects
are more pronounced �see lower inset in Fig. 6�. We can
eliminate them, at least partially, by subtracting the value
z�E=0,L� from z�E ,L�.27 Second, in the unperturbed model

the van Hove singularity, which appears at E=0 compared
with E= 	1 for the bricklayer, may spoil the scaling analy-
sis. More importantly, following the same procedure as for
the bricklayer, we found that the function X given by Eq. �9�
possesses a minimum only for small E0�10−4 although the
energy bandwidths are about the same for both lattices. Since
the energy E must be much smaller than E0, we had to re-
strict our analysis to energies �E��10−20. Fortunately, in such
a narrow energy interval, we can neglect the quadratic term
in the Taylor expansion �Eq. �7��. As shown in Fig. 6, both z1
and z2 are linear functions of � when L�32. This enables us
to estimate the exponent �1 from the analysis of the size
dependence of the slope, c1�L�� �ln L��1. This analysis is in-
dependent on both the choice of E0 and finite-size effects,
provided that the latter do not depend on the energy.

However, the fit turns out to be rather unstable to small
changes in the data ensemble. First, the interval of � is very
narrow and almost all data points are accumulated in the
right part of this interval. Therefore, the resulting fit is very
sensitive to the exact value of z1�E=0�. Second, although we
calculated our data with high accuracy, Fig. 6 shows that this
is still not sufficient for a perfect determination of the slope.
To check the accuracy of �1, we tested various data en-
sembles and found that �1 varies between 1.7 and 2.1. Nev-
ertheless, our data for the square lattice are compatible with
a logarithmic scaling relation.

V. CONCLUSIONS

We analyzed the scaling behavior of the two smallest
Lyapunov exponents z1 and z2 in disordered two-dimensional
chiral systems defined on a bricklayer and on a square lattice.
We found that both z1 and z2 follow a logarithmic scaling
relation as considered by Sittler and Hinrichsen28 with a cor-
relation length proposed by Fabrizio and Castelliani.22 Ac-
cording to Ref. 28, the physical origin of logarithmic scaling
is associated with multifractality and local scaling invari-
ance. The results presented above are the numerical confir-
mation of the scaling relation �4� in which the scaling vari-
able is given by the ratio of the logarithm of the system
width L to the logarithm of the correlation length �, instead
of the ratio L /� as applied usually. This scaling is accompa-
nied by the logarithmic energy dependence of the correlation
length ln ��E���ln�E0 / �E�� valid for �E��E0. Our results
also solve the contradiction between previous numerical
work, which apparently did not reach the true scaling regime,
and the Harris criterion.

Two methods of the scaling analysis were used. Both con-
firm that the logarithmic scaling is observable only for very
small values of the energy close to the chiral quantum critical
point at E=0. In order to resolve the Lyapunov exponents for
energies down to �E�=10−34, the implementation of qua-
druple precision in the numerical algorithms was necessary.
This probably explains why logarithmic scaling was not ob-
served in previous numerical work.15–20

The question arises whether the same logarithmic scaling
analysis can be performed also for the two-terminal conduc-
tance. At present this seems not possible with our available
computing power. In our previous work,15 we found
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g�E ,L�=g0 ln�Ẽ��L� / �E�� for �E��E�= Ẽ� /const, but did not
observe any energy and system size dependence of the en-
semble averaged conductance gc4 /�e2 /h as long as the
energy remains smaller than a certain value E��L−2. This
size-dependent energy interval coincides with the recently
observed depression in the density of states.23 The observa-
tion of a tiny logarithmic energy dependence of the conduc-
tance, if present at all, would require a far more accurate
numerical determination of the ensemble averaged mean
conductance.

As shown analytically in Ref. 22, the logarithmic energy
dependence of the correlation length near E=0 is accompa-
nied by a divergence of the density of states ��E�
�E−1 exp�−�4A ln E0 /E�1/2�. Such a relation is, however, not
found in recent numerical work on a unitary chiral lattice

model, where the density of states decreases to zero when
E→0.23 Also, a different divergency exponent of the density
of states ��E��E−1 exp�−1 /2�c�ln E /E0��2/3� was derived
analytically for the chiral orthogonal model.29,30 This differ-
ence shows also up in the energy dependence of the correla-
tion length. It would be very interesting to see, whether this
subtle difference can also be observed in numerical studies
on a bricklayer lattice with real random hopping disorder,
which belongs to the chiral orthogonal symmetry class.
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